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Abstract--This analysis examines the momentum and heat transfer occurring in the laminar boundary 
layer on a continuously moving and stretching two-dimensional surface in a non-Newtonian power law 
fluid. The Merk-Chao series expansion is used to generate ordinary differential equations from the partial 
differential momentum equation in order to obtain universal velocity functions. For the problem of 
combined momentum and heat transfer in the boundary layer of the moving sheet, a general power series 
is used to describe the fluid's velocity and temperature. Examples for a non-linear surface velocity and a 

linearly stretching surface velocity are provided. © 1997 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

In 1961 Sakiadis' developed a new class of boundary 
layer problems in a series of pioneering papers. Sak- 
iadis [1, 2] analyzed the momentum transfer occurring 
when a flat surface continuously moves through a 
quiescent fluid at a constant surface velocity. Both 
exact and approximate solutions were presented for 
the laminar flow case with the latter being obtained 
by the integral method. For turbulent flow, the one- 
seventh power velocity profile was utilized. In 1967 
Sakiadis' work was expanded and experimentally con- 
firmed by Tsou et al. [3] who investigated the heat 
transfer effects of a moving sheet with constant surface 
velocity and temperature. 

In 1966 Erickson et al. [4] investigated heat and 
mass transfer in the laminar boundary layer of a mov- 
ing flat surface with constant surface velocity and 
temperature but allowed for suction or injection at the 
surface. Griffin and Throne [5] confirmed Erickson's 
theoretical heat transfer coefficients by experimentally 
observing the thermal boundary layer using the Sch- 
midt shadowgraph method. In 1976 Chida and Katto 
[6] analyzed conjugate heat transfer in a moving flat 
plate of constant surface velocity where the flat plate 
had a finite thickness ; consequently, two temperature 
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profiles, one in the solid and one in the fluid, were 
obtained. Chen and Strobel [7] examined the effect of 
a buoyancy-induced pressure gradient on the laminar 
boundary layer of a moving flat plate of constant 
surface velocity and temperature, and the results com- 
pared well to that of Tsou et al. [3]. In 1982 Mout- 
soglou and Bhattacharya [8] extended Sakiadis' tur- 
bulent boundary layer work to include non-isothermal 
flat surfaces using the Van Driest mixing length model 
to approximate eddy diffusivity. 

Abdelhafez [9] numerically investigated skin fric- 
tion and heat transfer on a flat plate moving with 
constant velocity through a fluid flowing parallel to 
the surface using a finite difference method to solve 
the corresponding Navier-Stokes equations. In 1988 
Karwe and Juluria [10] extended Abdelhafez's work 
to include a flat plate with a finite thickness and mixed 
convection transport. Chappidi and Gunnerson [11] 
approached Abdelhafez's problem from an analytical 
viewpoint and presented closed form expressions that 
were solved by a Runge-Kutta integral technique and 
a perturbation procedure. In 1993 Lin et al. [ 12] solved 
Abdelhafez's problem using the Keller Box method 
and allowed the fluid to flow in the opposite direction 
of the moving flat plate. 

This class of boundary layer problems was again 
expanded by Vleggaar [13] who allowed the surface 
velocity to be a function of distance along the trav- 
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NOMENCLATURE 

a(~) universal wall velocity gradient, F(~, 0) 
b(~) defined in equation (33) 
erfc(x) complimentary error function 
k thermal conductivity 
K consistency index for non-Newtonian 

viscosity 
L reference length 
n power law exponent 
Nu,. local Nusselt number 
Pr generalized Prandtl number defined in 

equation (27) 
qs surface heat flux defined in equation 

(44) 
Re generalized Reynolds number defined 

in equation (27) 
T temperature 
u velocity component in the x-direction 
Us surface velocity 
v velocity component in the y-direction 
x streamwise coordinate measured along 

surface from slot 
x0 location where surface temperature 

step-change occurs 
coordinate normal to surface. Y 

Greek symbols 
thermal diffusivity 

6m displacement thickness defined in 
equation (40) 

62 momentum thickness defined in 
equation (40) 
transformed dimensionless variable 
defined in equation (24) 
dimensionless variable defined in 
equation (9b) 

0 dimensionless temperature defined in 
equation (22) 

A wedge parameter defined in equation 
(13) 
dimensionless variable defined in 
equation (9a) 

p fluid density 
z~.~ shear stress defined in equation 

(4). 

Subscripts 
s surface conditions 

condition of quiescent fluid. 

y, v 
T~ 

F momentum boundary layer 

slot 'N~ ~ thermal boundary layer 
im x ,  u 

x ° - . ~  Us(X) re,- 

Fig. 1. Coordinate system and physical model description. 

ersing coordinate. Vleggaar held the temperature con- 
stant, but chose to define the surface velocity as 
U = ex to compare with his experimental data that 
showed a non-constant velocity as a polymer mon- 
ofilament was pulled from a die. In 1986 Jeng et al. 

[14] investigated the momentum and heat transfer for 
a two-dimensional sheet of arbitrary surface velocity 
incurring a step change in surface temperature in a 
quiescent Newtonian fluid. The present work extends 
the analysis of Jeng et al. [14] to a non-Newtonian 
power law fluid. 

2. PROBLEM FORMULATION AND SOLUTION 
METHOD 

The physical problem being examined is shown in 
Fig. 1. A thin solid surface is extruded from a die slot 
at x = y = 0 on a fixed coordinate system and moves 
in the x direction with an arbitrary surface velocity, 

U~(x). For an incompressible, power law fluid with 
constant properties moving steadily at a large Rey- 
nolds number, the governing boundary layer equa- 
tions are : 

8u 8v 
continuity 8xx + 8yy = 0 (1) 

Ou Ou 1 c~ 
momentum U~xx +V~yy = p ~yy (r~.x) (2) 

with the boundary conditions 

u=Us(x), v = 0  @ y=O 

u = 0  (~ y ~  (3) 

where Us(x) is the surface velocity. For  power law 
fluids, the shear stress can be defined as 

- K  ~u , - i  8u 
~x  = 8y ~y" (4) 

For  the heat transfer analysis, the surface tem- 
perature incurs a step change, i.e. a section of the 
surface from the slot origin to an arbitrary distance 
x0 is isothermal at the fluid temperature T, ,  and for 
x > x0 the surface temperature is T0. For a constant 
property fluid and neglecting viscous dissipation, the 
governing boundary layer energy equation is : 

c~T ~T Q2T 
energy U~x +V~y = ~ ~y~ (5) 
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with 

T(x,y) = T ~ + ( T , - T ~ ) H ( x - x o )  @ y = 0  

T(x ,y )=  T,,~ @ X=Xo,  y > 0  

T(x,y)=T~: @ y ~ o o  (6) 

where H(x-xo)  is the heavy side unit operator with 
the values 

( X -  Xo) < 0 H ( x -  xo) = 0 

(X-Xo) > 0 H ( x - x o )  = 1. (7) 

When x0 = 0, these boundary conditions collapse to 
that for an isothermal surface at T~. 

The momentum equation and the energy equation 
are decoupled since the fluid is incompressible, there 
is no viscous dissipation, and properties are constant. 
The solution to the momentum equation will be dis- 
cussed first. 

A stream function, q'(x,y), defined by 

8q J ~q~ 
= gy-y  ~ = - e x  ( 8 )  

is introduced to satisfy the continuity equation. Trans- 
formations of the original x, y coordinates are 
achieved by 

f0 x ~ ~ = n U~.- 1 (x) dx (9a) 

y -* q = (n+ 1)~ U~(x)y. (9b) 

A dimensionless stream function, f(~, q), is intro- 
duced by 

FK T'*+ I 
• ( x ,y )  = L;(.+l)q (10) 

so that, employing equations (8), (9) and (I0), the 
velocity components become 

u = U,(x)f '  (11) 

v = - nU2s "-'  
(n+ 1)~ 

~f × [ f + f ' q ( A - 1 ) + ~ ( n + l ) ~ ]  (12) 

where A is the 'surface velocity parameter' and is 
defined by 

(n+ 1)~ dU, 
A U, d~ " (13) 

Substituting equations (11) and (12) into the 
momentum equation, the dimensionless stream func- 
tion,J~ satisfies the following transformed momentum 
equation : 

If, a:f f " D C " l " - ' + f f " - A ( f ' )  2 =(n+ 1)~ O{Sq 

(14) 

with the boundary conditions 

f = 0 ,  ~ f - 1  @ q = 0  (15a) 
(7///- 

8 J = 0  (7 ~/~oo. (15b) 
8q 

Generally, the boundary condition listed in equation 
(15a) should be f +  (n+ 1)~(c~f/O¢) = 0. However, for 
a non-penetrable surface, the boundary condition 
f = 0  @ ~/=0 is set and Of/8~ vanishes at the 
surface. 

Using the Merk-Chao series expansion, which reco- 
gnizes the one-to-one relationship between ~ and A 
since both are functions of x only, f(¢, q, n) can be 
represented in the following form : 

1 dA f (~ , rhn )=fo (A ,q ,n )+(n+ )~ ~ - f l  (A, r/, n) 

d2A 
+ [(n+ 1)¢] 2 ~5-J~ (A, q, n) 

[- dA32 
+ [ (n+  t)~-d~ j f s (A ,q ,n ) . . .  (16) 

where the f s  signify universal functions to be solved 
for specific values of A and n, regardless of ~. Since 
the first term usually dominates the series expansion, 
the approximation If'l" ' -~ [fd[ "-~ is made as done 
by Chang [15]. This approximation can be proved 
valid by inspection of results. 

Inserting equation (16) into equation (14) and col- 
lecting terms free of dA/d~ and then terms containing 

dA d2A [- dA-] 2 
( n + l ) ~ ,  [ ( n+ I )~ ]z~2  , [( .+l)¢a~ j ..... 

a series of ordinary differential equations is obtained. 
The first equation of the series is 

fo'[f~[ ~-I + f o f ~ - A ( f ' o )  2 = 0 (17a) 

with 

Jo (A, q, n) = O, J~ (A, r/, n) = 1 @ q = 0  

(17b) 

.f~ (A, q, n) = 0 @ q - ,  oo. (17c) 

The second, third, and fourth equations in the series 
are 

n + l \  
f'['[f~l" ~+fof '(+(n+2)f '~f ,  --2 A +  ~ - } f o f ~ /  

~ _ f ~ _  8J0 ,, - ~ f 0  (18) 
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f~'lfg[ "-I +f0f~ + (2n + 3)f ; f2  - 2 ( A  + n +  l ) f 'o f2  

= fq.f;  -J]f '~ (19) 

.f;" IJ{; [ "- l  +J0f~ + (2n + 3)f'~f~ + (n + 2).f';f~ 

- ( A + n +  1) (2f~/{~ + (.1;) 2) 

- ~Xg ) (20) 

with 

f ( A , q , n ) = f ~ ( A , q , n ) = O  @ q = 0  (21a) 

f ; ( A , q , n )  = 0 @ t/--+ oo (21b) 

where i = 1,2 and 3. 
It should be noted that the above coupled ordinary 

differential equations reduce to the corresponding 
equations of Jeng et al. [14] when n = 1.0. It should 
also be noted that the f s  (i = 0, 1,2 and 3) represent 
universal functions that can be tabulated once and for 
all for any specific A and n. 

In order to solve the energy equation for a step 
change in surface temperature, further trans- 
formations are needed : 

T - T ~  
0 = - -  (22) 

T,-T~ 

(23) 

where 

q- -+~=b(~)~  (24) 

f 
Yo 

~0 = n U 2"- ~ (x) dx 
d o  

(25) 

as was done by Jeng et al. [14]. 
The actual expressions for c and b(() are deferred 

until a set of ordinary differential equations is 
obtained; however, c must be a constant and b(¢) 
has to be defined such that the solution of the set 
of equations can be expressed as universal functions, 
independent of the problem's geometry. 

Upon substituting equations (22), (23), and (24) 
into equation (5), the thermal energy equation 
becomes 

+ 

~3(:db] ~f} A(n+l)c 3 (?fSO 
b 2 ~ ( n + l ) ~ q  + 2b 2 tZ - Z ) ~  = 0  

(26) 
where 

A = n P r [ ( n + l ) ~ T  -~/"+L 
LUg" ' LJ  

The generalized Pr and Re numbers are defined by the 

following relations : 

Pr - pcpU~L Re - PUt -"L"  (27) 
k(Re)2,.+ 1 K 

with 

0(X, f f ) = l  @ ~ = 0  (28a) 

00~,ff)=0 @ ~--+0¢. (28b) 

In order to obtain a solution to equation (26), the 
velocity functions, namely f ,  Of/d~ and 8f/Sq must be 
represented in a series. Consequently, the dimen- 
sionless stream function is defined by 

qJ ~ + a2ff 2_ 2 
j =  I 

a 4 ~ 4 .  4 -  
+ X 3 + . .-  (29) 

3.b 4.~7 )~ -t- 

with the boundary conditions stated in equation (15). 
Using equation (29) in equation (14), rearranging, 
and collecting like powers oft/, the first five coefficients 
of a/in equation (29) become 

al = 1 ; a2 = f " ( r / =  0) = a; 

a 3  = mlal~-"; ( ' /4  = lal' " [ a ( 2 A - l ) + ( n + l ) ¢ a ' ]  

as = 2m[lal 2 2~(m- 1)]+ la13-'(2A - 1) 
+ (n+ 1)~[a ' (A(n- 1)lal ~- 2, 

-[a[2") +A'lal2-2"]. (30) 

The series solution to the transformed energy equa- 
tion was sought in the following series : 

0=  ~ 0~(~,ff)x ~ (31) 
m = 0 

and 

00(~,~)=1,  0 i (~ ,~)=0  @ ~ = 0  (32a) 

00 (G~)=0 ,  0 i (~ ,~)=0  @ ~ (32b) 

where i = 1,2, and 3. 
Inserting equations (29) and (31) into equation (26) 

and collecting like powers of ~, a set of linear partial 
differential equations are obtained. In order to sim- 
plify this set of equations, it is necessary to define 

a -  
2 b(~) = , f J ,  0, = ~0, 

C - n +  1 , 

= a 2 _ FA~ ( db - 
02 PO2"l q- ~TL2 02 2 q - L v  n@ " 

a 3 - aa3 0 a I A 03 = ;to3., + 2~  3,2+ ;~3.~+ L2~ 

A~a db l -  
x (a+  (n+ 1)~a') - ~ -  (n+ 1)d-~ 03,4 

+ Z ~35 + I ~ Z -  db]-  6b ' L~, t n + l ) - .  0 3 , 6 .  (33) 
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Employing equation (33), equation (26) reduces to 
the following equations : 

Og + ~0~ = 0 (34) 

0'( +~01 -~,  = -~20; (35) 

0'2',, q-~02,1 --202,1 = --~20' 1 -1"- ~01 (36a) 

0~. 2 -~ ¢02,2 - -  202,2 = - ~300 (36b) 

0~,3 + ~01,3 - 202.3 = ~0; (36c) 

03, +~.0'3,,-30>~ = -~202,t +2~02,1 (37a) 

--tt ~'--t -- 2--¢ 
0 3 .  2 -~%03. 2 +303.2 = -- (~30] --~ 02, 2 +2~02.2 ~1-(~201 

0~, 4 -~- ~03, 4 - -  3 0 3 ,  4 = - -  ~ 2 0 ;  

0~.5 +~0;,5 --303,5 = - - ~ 4 0 ;  

(37b) 

(37c) 

(37d) 

(37e) 

(37f) 

with the corresponding boundary conditions : 

0 o ( ~ , 0 =  1, 0 , ( ~ , # ) = 0 , < , ( ~ , 0 = 0  @ # = 0  

00(~,~) = 0 , 01 (~, ~) = 0m,n(~,~) = 0 @ ~ --+ O0 
(38) 

where the primes denote partial differentiation with 
respect to ~. It is worth noting that Jeng et al. [14] 
incorrectly defined equation (37c) by using ... + ~0g 
on the right hand side instead o f . - .  + ~20~ as in the 
present case. This difference can be quantified through 
direct comparison later. 

3. FORMULA RELATING TO MOMENTUM AND 
HEAT TRANSFER 

The calculation of the local friction coefficient and 
Nusselt number and the development of the dis- 
placement and momentum thickness, becomes a sim- 
ple matter when using the solutions f o r f  and 0~. The 
only required value is the surface velocity U~(x), which 
may be obtained from experimentation. 

Using universal functions, the local friction 
coefficient can be expressed as 

=o 2 o r = ,  - Ifgl" l ( A ,  0 )  
~pV~ Re b"+' 

( , ,  d A ,  
× l f0(A,0)  + (n+ 1)~ d~f~ (A, 0) + [(n+ l)~] 2 

d2A/~ (A, 0) + . . .} (39) 
x d ~ .  

The displacement and momentum thicknesses for a 
continuous, two-dimensional moving sheet are given 
by 

'i? 6j = udy  32 = - -  u 2dr (40) 
j o  u ?  " 

and 

~i = U~ {f0 (A, q~.) 

dA 
+ (n+ 1)~ d~J~ (A, t/~) 

d2A 
+ [(n+ 1)~12 d~y;  (A, ~ )  + . . . }  (41) 

K 7 I'"+ I ;(n+l)~J 
6z = us { I, (A) + (n+ 1 ) ~ I 2 ( A )  

2 d2A 
+[ (n+l )~]  d ~ I 3 ( A ) + - . - }  (42) 

where 

• 
L ~̧  

I, = ( jo)  2 drl 12 = 2 f 'of~ dtl 

I3 = 2 f]~f'o.f'2 dtl, (43) 

Evaluating the integrals in equation (43) and inserting 
the values into the momentum thickness equation 
becomes a relatively easy procedure. Values needed to 
calculate the displacement thickness are given in ref. 
[161. 

The expression for the local surface heat flux for a 
step change in temperature is given by 

q~ = 8y y=0 

k(T~- T~)[nPrRe21"+'U~ "- ' l  ''2 ( ~c~0 

and the Nusselt number is defined by 

(44) 

Nu qsL 
k ( T ~ -  T~,) 

l[nerRe2/"+'U2~-lLll /2 00 
(45) 
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where 

( 0.25a 
- aUl¢=0 = 0.79788+ ~ z 

1-0.09974a ~ -- 0.12467a ~ 

+ L  -b~ 

db 
-0 .19947 [~ ( n + l ) ~ l l  Z 

+ I0.11719a 3 + 0.03 b 3125a4 - 0.14063aa3 

+0.0625[(n  +~)~a '  ~a d b ~  l) jj - + . . . .  

Table 1. Convergence criteria for numerical integration tech- 
nique 

n If;(q~)l I f~ (q,~)l I f~-(nOI ~ Step size 

0.3 1.0xl0 5 1.0xl0 5 1.0xl0 4 550 0.02 
0.5 1.0xl0 6 1.0xl0 -~ 1.0xl0 -6 550 0,02 
0.7 1.0xl0 s 1.0xl0 8 1.0xl0 8 470 0.02 
0.9 1.0xl0 to 1.0xl0 8 1.0xl0 8 70 0.01 
1,0 1.0xl0 /~) 1.0xl0 8 1.0xl0 8 21 0.01 
1.1 1.0×10 I~ 1.0x10-8 1.0xl0 8 9.5 0.01 
1.3 1.0xl0 ~ 1.0xl0 8 1.0xl0 8 4.2 0.01 
1.5 1,0xl0 6 1.0xl0 6 1.0xl0 6 2.85 0.01 
1.7 1.0xl0 6 1.0x10-.6 1.0xl0 6 2.27 0.01 
1.9 1.0xl0 6 1.0xl0 3 1.0xl0 3 1.95 0.01 

(46) 

The dimensionless temperature profile can now be 
written more precisely as 

a -  a-  0 0(A,~,~)=00(0+~0,(0Z+ b: :,,(0 

db 

a aa~ ~ .~. a 03.3 (t,) + b~ . , ( : )+~g ;  ~.:~O+~- 

+[21b ~a (a+(n+ 1)~a ' ) -b2(n+ 1 ) ~ 1  

a4 7. "~"+ I-~a n 1 dbq 

03,6(01;(3 + . . - .  (47) x 

The above analysis uses the first four terms, but terms 
of  higher order may be obtained by a simple calcu- 
lation. The accuracy of  using a finite number of  terms 
in the series depends on the convergency of  the series. 
However, convergence was excellent in the above 
analysis. 

4. NUMERICAL SOLUTIONS AND ACCURACY 
ESTIMATION 

The differential equations obtained f o r f  (i = 0, l, 2 
and 3) were numerically integrated by a fourth order 
Runge-Kut ta  integration technique using double pre- 
cision. Data  for nine values of  n ranging from 0.3 to 
1.9 and for six values of  A ranging from - 0 . 1 0  to 1.0 
have been computed and recorded. 

High accuracy for the f0 solutions is necessary since 
.fl and fz are dependent on the f0 results. The integra- 
tion step size, Aq, represents a compromise between 
truncation error and computat ion time. This step size, 
along with the convergence criteria, had to be varied 
with n to control computat ion time. The iterations 

were continued until the conditions listed in Table 1 
were met. For  example, when n = 1.3, convergence 
was considered reached when ]f~(q~)l < 1.0 x 10 -5 
where q,~ denotes some large value of  7. Trends in 
boundary layer thickness are also shown in Table 1. 
As n increases, the r/~ required to reach quiescent fluid 
decreases, indicating the momentum boundary layer 
thickness decreases with increasing power law 
exponent. The results obtained in this manner com- 
pare well with those published by Jeng et al. [14]. A 
complete listing of  all surface derivatives may be 
found in Table 2. 

High accuracy is also required for the temperature 
function 00 for the same reason as that given for J6. 
However, the 00 equation has a closed form solution 
given by 

00(~, 0 = erfc (~22)  (48) 

with the surface derivative 

0o(4, ~ = 0) . . . .  0.797885 (49) 

An Adams-Moul ten  predictor-corrector  technique 
was used for the integration of  the 0~ and Ore., equa- 
tions with a fourth order Runge-Kut ta  technique 
serving as a start-up method. The iterations would 
continue until the following condition was met : 

It~m,,(~ ~ oo)1 < 10 s (50) 

The numerical solutions to equations (35) (37) are 
available in ref. [16]. The surface derivatives of  these 
functions are required in order to evaluate the surface 
heat flux and are 

0;(ff = 0) = -0 .2500000~ .2 ( f f  = 0) = 0.281250 

0~., (~ = 0) = 0 .1246690~.3(~ = 0) = 0.062500 

0~.2(~ = 0) = - 0 . 1 9 9 4 7 1 0 ~ . 4 ( ~  = 0) = -0 .125000 

O'z,3(~ = 0) = 0.1994710'3.5(~ = 0) = -0 .187500 

0~,1(~ = 0) = - 0 . 1 1 7 1 8 7 0 ~ . s ( ~  = 0) = -0.062500.  
(51) 
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Table 2. Surface derivative comparison with ref. [14] 
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A fg(O) f~'(O) × 10 f~(O) × 100 

Present Ref. [14] Present Ref. [14] Present Ref. [14] 

-0.10 -0.5815786 -0.5815786 0 . 6 0 8 6 7 2 0  0.6086720 -0.8706994 -0.8706994 
0.00 -0.6275549 -0.6275549 0 . 5 5 1 9 5 1 1  0 . 5 5 1 9 5 1 0  -0.7698453 -0.7698450 
0.25 -0.7337875 -0.7337875 0 . 4 4 1 2 5 2 5  0 . 4 4 1 2 5 2 5  -0.5787687 -0.5787689 
0.50 -0.8299459 -0.8299459 0 . 3 6 1 5 8 0 0  0 . 3 6 1 5 8 0 0  -0.4470959 -0.4470959 
0.75 -0.9181773 -0.9181774 0 . 3 0 2 2 9 4 3  0.3022944 -0.3531981 -0.3531983 
1.00 - 1.0000000 - 1.0000000 0 . 2 5 6 9 5 5 3  0 . 2 5 6 9 5 5 6  -0.2483160 -0.2843165 

5. APPLICATIONS 

In this section, two examples using different surface 
velocity distributions will be given in order to dem- 
onstrate the usefulness and the accuracy of the series 
solution presented in this paper. They include the 
power law surface velocity and the linearly stretching 
surface velocity with a non-zero slot velocity. 

5.1. Surface velocity proportional to a power of dis- 
tance measured from the slot 

Consider the following surface velocity : 

Us(x) = cx" (52) 

where c and m are constants. Substituting this surface 
velocity into equations (9a) and (13), ¢ and A become 

ncZn-lXm(2n t)+l m(n+ 1) 

4 -  m ( 2 n - - 1 ) + l  A m ( 2 n - 1 ) + l "  (53) 

For a given n, A is a constant ; therefore, 

dA d2A 

de - d ~  2 

With the A derivatives equal to zero, the local friction 
coefficient for this flow becomes 

~ cfRe,('n+ , = Fm(2n--1) + l ] "/'+ ' L {If~(n, 0)1"} 

(54) 

where 

pc2 -nxm(2 n)+n 
Re~ - 

K 

If the flow incurs a step-change in temperature at x0, 
the local Nusselt number  can be calculated with the 
following equation : 

Nu~Re[l, '2=FPr(m(2n-_l)+l)] 1 ' 2 ( - ~ ) ¢ = °  
k ( n + l )  J Z 

(55) 

5.2. Linearly stretched surface with non-zero slot vel- 
ocity 

As previously mentioned, the disadvantage of the 
non-linear surface velocity is the zero velocity at the 
origin ; however, if the surface velocity is taken to be 

where L is the inverse of the absolute magnitude to 
the velocity gradient, one can see the more realistic 
non-zero velocity at the slot. Using this surface 
velocity, 4, A and As derivatives become 

(n+  1 ) ~  - - -  
X ~4n 2n (l+U 

( n +  1)232 
~32A 

(57) 

The variation of dimensionless velocity profiles with 
n for a linearly stretched surface at x/L = 0.5 can be 
seen in Fig. 2. This figure also illustrates the relative 
boundary layer thicknesses for non-Newtonian fluids 
of different power law exponents. For  a non-New- 
tonian fluid with a power law exponent of 1.5, the 
boundary layer is relatively thin ( f  approaches zero 
quickly). However, if n = 0.5, the boundary layer is 
relatively thick by comparison. 

The local friction coefficient for a linearly stretched 
surface becomes 
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Fig. 2. Variation of dimensionless velocity profiles with n for linearly stretched surface velocity at x/L  = 0.5. 

I 
cfRe.{/"+' = _ 

2 x /  x \  2"-1 -] ,i,+l 

{ dA } 
Ifd (A, 0) 1" , f ;  (A, 0) + (n + 1)~ ~f'; (A, 0) + . . .  

(58a) 

where 

X~2 -n So-°(l+z) 
Re~. = K (58b) 

If the flow incurs a step-change in temperature at x0, 
the local Nusselt number can be calculated with the 
following equation : 

NuxRe~ 1 i,+ 

I / xV°-~x q 
2 n P r ~ t l W z )  z ii2( 00"~[ 

" t , -  a<;)l~_o 
. . . .  x ~ - - -  (59a) 

where 

p U t - " x "  and P r ~ =  pcpUsx 
Rex - K k ( R e O  2/"+1" 

(59b) 

For tabulation, equation (59a) can be rewritten as 

NuxRe~- i,.2 

where 

(60a) 

pUox  and Pr = K (60b) Rex - K p~" 

Table 3 was generated using equation (60a). A com- 
parison of NuxRe£  1/2 between ref. [14] and the present 
study for the Newtonian case finds a difference of 
approximately 6%. This difference can be attributed 
to the error found in equation (37c). It is worth noting 
that Kim and Jeng [17] have already presented results 
for NuxRex 112 for non-Newtonian power law fluids. 
In that analysis, only f~ was used for the velocity 
gradient at the surface, whereas the present study used 
the first three terms. Also, the equation used by Kim 
and Jeng [17] to generate a table similar to Table 3 
had the same error that appeared in Jeng et al. [14]. 
Consequently, an in-depth comparison of Kim and 
Jeng [17] and the present study is not presented here. 

6. CONCLUSIONS 

The problem of analyzing the momentum and heat 
transfer in the laminar boundary layer of a continuous 
two-dimensional sheet moving through a quiescent 
power law fluid was solved by the application of the 
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Table 3. NuxRe2 L2 comparison for linearly stretched isothermal surface (X = 1) 
with ref. [14] 

Pr = 0.7 

n = l . 0  n = 0 . 5  n = l . 5  

A x/L Present ReK [14] x/L Present x/L Present 

0.1 0.0541 0.32150 0.34336 0.0714 0.46321 0.04354 0.21677 
0.3 0.1952 0.34963 0.36684 0.2500 0.49665 0.1604 0.23642 
0.5 0.4142 0.38334 0.40373 0.5000 0.53516 0.3572 0.25955 
0.7 0.8257 0.44378 0.47048 0.8750 0.59425 0.8420 0.30872 

M e r k - C h a o  series expansion method.  Sakiadis '  mov- 
ing surface problem had  been studied by many  inves- 
t igators ;  however,  this marks  the first t ime tha t  the 
p rob lem has been solved for a non-Newton ian  power  
law fluid with more than  a one term M e r k - C h a o  series 
analysis. 

Appropr ia te  coordinate  t rans format ions  and  series 
expansions of  the velocity funct ion,  f ,  and  tempera-  
ture, 0, were presented.  The set of  ordinary  differential 
equat ions  arising f rom the M e r k - C h a o  series were 
derived and  solved using numerical  techniques,  which 
are detailed in the text. The singularity problems that  
arise were avoided using l 'Hopi ta l ' s  rule and  limiting 
the invest igation to non-Newton ian  fluids whose 
power law index were less than  two. 

Compar i sons  made  with Jeng et al. [14] for a New- 
tonian  fluid i l lustrated an  error  located in the analysis 
of  Jeng et al. [14]. Compar i sons  made  with Kim and 
Jeng [17] for non -Newton ian  fluids had  similar dis- 
crepancies. Fo r  future work,  one could use Duhamel ' s  
integral  to predict  the solid surface tempera ture  profile 
of  the moving  surface by using the series expansion 
of  the surface tempera ture  universal  funct ions as the 
kernel. 

The M e r k - C h a o  series expansion is a useful me thod  
to solve difficult t r anspor t  problems in tha t  simple 
t rans format ions  and  universal  funct ions are used to 
solve the fundamenta l  differential equat ions  regard- 
less of  geometry. 
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